Documentation for PISM, a parallel Ice Sheet Model

NEWS: PhD scholarship at Victoria University Wellington: Antarctic modelling

The Parallel Ice Sheet Model pism0.7 is an open source, parallel, high-resolution ice sheet model. Features:

  • hybrid shallow stress balance
  • marine ice sheet physics
  • polythermal energy conservation
  • subglacial hydrology and till model
  • extensible coupling to atmospheric and ocean models
  • inversion toolbox in Python
  • verification and validation tools
  • complete documentation for users and developers
  • uses MPI and PETSc for parallel simulations
  • reads and writes CF-compliant NetCDF

PISM Application of the Month

November 2015

Click the image to go to the Nature Climate Change journal page.

Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin
investigator: M. Mengel, J. Feldmann, and A. Levermann
journal: Nature Climate Change

This paper might best be understood as the second of three studies, by these authors, of three Antarctic ice sheet/shelf basins. These basins are among the biggest and, before studying their properties in detail, the most potentially unstable. But the PISM model results do not suggest all of these basins act the same.

The first of these papers, M. Mengel and A. Levermann (2014) "Ice plug prevents irreversible discharge from East Antarctica", suggests that the Wilkes basin is likely to destabilize under sufficient forcing to remove a certain (quantified) amount of near-ocean ice, but that the time scale of destabilization is long. The third of these papers, J. Feldmann and A. Levermann (2015) "Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin", which just appeared in November 2015, demonstrates the fast, and very large in magnitude, destabilization of the whole of WAIS from an Amundsen Sea basin forcing. The current paper suggests that, by contrast, the Filchner-Ronne basin is essentially stable in the sense that the forcing dominates its response.

Ocean models do indicate an abrupt intrusion of warm circumpolar deep water into the cavity below the Filchner–Ronne ice shelf within the next two centuries. The basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. This paper's main result, as shown in the graph at left, is that buttressing “wins”. Stronger forcing (“shelf melting”) generates greater ice loss, but there is no tipping point as with the other basins. The response is roughly linear.

2015/11/08 11:44 · Ed Bueler

Latest News

Ph.D scholarship at Victoria University Wellington: Antarctic ice-sheet modelling

See the official announcement for complete details.

The Antarctic Research Centre, Victoria University of Wellington, New Zealand, is offering a FULLY FUNDED scholarship for an enthusiastic and talented Ph.D student to undertake numerical ice-sheet modelling research. Experiments will focus on better understanding and simulating the processes involved in ice-sheet – ocean interactions. Such processes determine the basal mass balance of marine-based ice-sheets such as the West Antarctic Ice Sheet, and as such, control the pattern and timing of grounding-line migrations.

Collaborating with scientists at a variety of New Zealand (VUW, GNS, NIWA) and Australian (UNSW, UTAS, AAD) institutions, the researcher will use present-day glaciological and oceanographic observations as primary constraints to a suite of model simulations that will explore the sensitivity of Antarctic ice-sheets to changes in ocean circulation. A key aspect of the project lies in trying to identify and quantify thresholds and feedback mechanisms that may either accelerate or inhibit ice-shelf melt. The ultimate aim of the project is to build on recent work to provide more robust simulations of ice-shelf and ice-sheet changes under future scenarios of perturbed atmospheric and oceanographic conditions.

The research project will span a range of temporal and spatial scales, but will primarily use the Parallel Ice Sheet Model and will focus initially on the Ross Ice Shelf. The successful applicant may also have the opportunity to spend time in Antarctica acquiring new data.

Skills: Applicants must have a strong background in geophysics, maths or other numerical Earth Sciences. Experience working in a UNIX / Linux environment, including shell scripting, is essential. Programming abilities in any of the usual languages and experience with high-performance computing facilities would also be extremely useful.

Applications: We wish to have the successful applicant starting no later than July 2016, and therefore request completed applications by 18th December 2015.

For details of the application process or to lodge an expression of interest, contact Dr. Nick Golledge ( as soon as possible.

2015/11/24 18:31 · Ed Bueler

Nothing to stop WAIS deglaciation after Amundsen Sea retreat?

A new paper in the Proceedings of the National Academy of Sciences by J. Feldmann and A. Levermann, of the Potsdam Institute for Climate Impact Research, uses PISM simulations to show that nearly-complete WAIS collapse is triggered by present-day melt rates in the Amundsen Sea. Modeled WAIS deglaciation follows after relatively-short (60–200a) periods in which the present-day sub-shelf (i.e. ocean-caused) melt rates are sustained.

The simulations use conservative assumptions about, and (necessarily) modeling of, the interaction of the ice sheet with the ocean and atmosphere. In particular, subshelf melt rates for the present ice shelf geometry are taken from Finite Element Sea Ice-Ocean Model (FESOM) results. These are then extended to the evolving cavity geometry by a diffusive algorithm into regions below sea level, but with a pressure adjustment using the ice shelf base elevation. This leads to melt rates further inland that are similar to corresponding present-day-cavity-geometry-induced melt rates.

In most other ways this application of PISM is as expected, though at high (5km) resolution and using a full suite of marine ice sheet submodels: 50ka spinup, SIA+SSA model with plastic till, subgrid motion of the calving front, ocean-water stress boundary condition at the calving front, the "eigen-calving" calving law, and an interpolated grounding line.

The results of the simulations are most easily understood by seeing what happens:

This work appeared today, 2 November 2015. It is already featured in commentaries at the Washington Post, The Guardian, and Bloomberg Business News. It is also featured in Nature journal's "News:Explainer", and in Science magazine's "Latest News".

The last of these includes this high-level view from two well-known students of the behavior of Amundsen Sea-sector glaciers:

“This paper does confirm what we hypothesized, that knocking out the Pine Island Glacier and Thwaites takes down the rest of the West Antarctic Ice Sheet,” says Ian Joughin, a glaciologist at the University of Washington, Seattle, who co-authored last year’s Science paper. He adds, however, that the model’s weakness is its [temporal] resolution; it shows the destabilization of the glaciers occurring roughly 60 years from now, whereas present observations suggest that collapse is already underway. As a result, Joughin says, the model’s time scale for the collapse is probably too long. “It’s more likely measured in centuries rather than millennia.”
Indeed, “the jury is still out” on whether Feldmann and Levermann’s study got the time scale right, [Eric] Rignot [of the University of California, Irvine] says. The long-term evolution of an ice sheet “is a very complex modeling problem. Some of the variables controlling the models are not all that well known,” he adds, including forces such as winds, ocean circulation, and how icebergs calve. “There is not a model out there that is getting it right, because they all have caveats. I think the discussion is ongoing, and is only going to be more interesting with time.”
2015/11/02 16:14 · Ed Bueler

Local Fairbanks paper features PISM

As a result of the buzz around Winkelmann et al. (2015)'s modeling of the effect of full conversion of available fossil fuels in the ground into atmospheric CO2, using PISM for determining ice dynamics/response timescale, on 5 October our local paper the Fairbanks Daily News Miner featured PISM. The content is a bit warped by scientist-to-journalist transmission issues, but we are happy to have local recognition of this UAF-lead project!

2015/10/13 10:13 · Ed Bueler

PhD position at ETH Zurich in paleo-ice sheet modelling

See the official position announcement here.

We are looking for a candidate who is interested in taking part in the research project “Modelling the ice flow in the western Alps during the last glacial cycle” which is a joint initiative between ETH Zurich and the University of Bern (Prof. Christoph Raible and Dr. Juan Jose Gomez-Navarro). The objective is to better understand the chronology of the last glaciation over the Alps via a modelling approach. The core of this doctoral research will be to model the ice flow and the glacial extent in the western Alps during the last glacial cycle. For that purpose, the PhD student will set up and run the Parallel Ice Sheet Model (PISM) on the clusters of the Swiss National Supercomputing Centre. The crucial step in setting up in PISM will be to include high-resolution climate simulation results, which will be conducted at the University of Bern. The combination of the two state-of-the-art models (ice flow and climate) will give a new insight of the ice flow field prevailing in the western Alpine region during some periods of interest like the last glacial maximum (22000 BP) and an earlier period (65000 BP). The final goal of the PhD will be to compare the new model results to the geomorphological evidence left on the Swiss landscape during the last glacial cycle (e.g. moraines, erratic boulders) in collaboration with quaternary geologists of EHT Zurich. The PhD student will be supervised by Dr. Guillaume Jouvet and Prof. Martin Funk.

The ideal candidate has a master degree either in geophysics, earth sciences, physics, applied mathematics, computer science, or a related field, and a keen interest in modelling of geophysical processes. Previous experience in computer modelling and scientific programming languages (C/C++, Python, Matlab) is an asset. Good writing and communication skills as well as the motivation to fruitfully collaborate within an interdisciplinary framework are essential, in particular with our climate modelling partners at the University of Bern.

For additional information please refer to or contact Dr. Guillaume Jouvet, (no applications).

2015/10/13 10:03 · Ed Bueler

PISM team

PISM is jointly developed at the University of Alaska, Fairbanks (UAF) and the Potsdam Institute for Climate Impact Research (PIK). For more about the team see the UAF Developers and PIK Developers pages.

UAF developers, who are in the Glaciers Group at the GI, are supported by NASA's Modeling, Analysis, and Prediction and Cryospheric Sciences Programs (grants NAG5-11371, NNX09AJ38C, NNX13AM16G, NNX13AK27G) and by the Arctic Region Supercomputing Center.

home.txt · Last modified: 2015/11/24 18:33 by Ed Bueler
© 2015 by PISM | webmaster