[1]R. S. Fausto, A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen. A new present-day temperature parameterization for Greenland. J. Glaciol., 55(189):95–105, 2009.
[2]P. Huybrechts. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev., 21:203–231, 2002.
[3]M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5:727–740, 2011.
[4]P. Huybrechts and J. de Wolde. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12:2169–2188, 1999.
[5]C. Ritz. EISMINT Intercomparison Experiment: Comparison of existing Greenland models. 1997. URL:
[6]S. J. Johnsen, D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B:624–629, 1995.
[7]J. Imbrie and eight others. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta-O-18 record. In Milankovitch and Climate: Understanding the Response to Astronomical Forcing, pages 269–305. D. Reidel, 1984.
[8]A Beckmann and H Goosse. A parameterization of ice shelf-ocean interaction for climate models. Ocean Modelling, 5(2):157–170, 2003. URL:
[9]David M Holland and Adrian Jenkins. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. Journal of Physical Oceanography, 29(8):1787–1800, 1999.
[10]Hartmut H. Hellmer, Stanley S. Jacobs, and Adrian Jenkins. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. American Geophysical Union, 1998.
[11]Dirk Olbers and Hartmut Hellmer. A box model of circulation and melting in ice shelf caverns. Ocean Dynamics, 60(1):141–153, 2010.
[12]HH Hellmer and DJ Olbers. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarctic Science, 1(04):325–336, 1989.
[13]E. L. Lewis and R. G. Perkin. Ice pumps and their rates. Journal of Geophysical Research: Oceans, 91(C10):11756–11762, 1986. doi:10.1029/JC091iC10p11756.
[14]Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann. Antarctic sub-shelf melt rates via pico. The Cryosphere, 12(6):1969–1985, 2018. URL:, doi:10.5194/tc-12-1969-2018.
[15]Reinhard Calov and Ralf Greve. Correspondence: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol, 51(172):173–175, 2005.
[16]I. Rogozhina and D. Rau. Vital role of daily temperature variability in surface mass balance parameterizations of the greenland ice sheet. The Cryosphere, 8:575–585, 2014. doi:10.5194/tc-8-575-2014.
[17]J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree day surface melt model. J. Glaciol., 59(218):1202–1204, 2013. doi:10.3189/2013JoG13J081.
[18]J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice sheet surfaces. J. Glaciol., 2014. doi:10.3189/2014JoG14J036.
[19]A. Payne and others. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 153:227–238, 2000.
[20]R. Hock. Glacier melt: a review of processes and their modelling. Prog. Phys. Geog., 29(3):362–391, 2005.
[21]G. Cogley and others. Glossary of Mass-Balance and Related Terms. IACS Working Group on Mass-balance Terminology and Methods, Draft 3, 10 July, 2009. URL:
[22]E. Bueler and J. Brown. Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J. Geophys. Res., 2009. F03008, doi:10.1029/2008JF001179.
[23]E. Bueler, J. Brown, and C. Lingle. Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. J. Glaciol., 53(182):499–516, 2007.
[24]A. C. Fowler. Mathematical Models in the Applied Sciences. Cambridge Univ. Press, 1997.
[25]I. Joughin, M. Fahnestock, S. Ekholm, and R. Kwok. Balance velocities of the Greenland ice sheet. Geophysical Research Letters, 24(23):3045–3048, 1997.
[26]E. Bueler, C. S. Lingle, J. A. Kallen-Brown, D. N. Covey, and L. N. Bowman. Exact solutions and numerical verification for isothermal ice sheets. J. Glaciol., 51(173):291–306, 2005.
[27]P. Huybrechts and others. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23:1–12, 1996.
[28]A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter. An enthalpy formulation for glaciers and ice sheets. J. Glaciol., 58(209):441–457, 2012. doi:10.3189/2012JoG11J088.
[29]R. Greve. A continuum–mechanical formulation for shallow polythermal ice sheets. Phil. Trans. Royal Soc. London A, 355:921–974, 1997.
[30]R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description. The Cryosphere, 5:715–726, 2011.
[31]H. Blatter. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138):333–344, 1995.
[32]Frank Pattyn. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 2003. doi:10.1029/2002JB002329.
[33]C. Schoof. Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models Methods Appl. Sci. (M3AS), 20:157–189, 2010. doi:10.1142/S0218202510004180.
[34]K. Hutter. Theoretical Glaciology. D. Reidel, 1983.
[35]M. Weis, R. Greve, and K. Hutter. Theory of shallow ice shelves. Continuum Mech. Thermodyn., 11(1):15–50, 1999.
[36]L. W. Morland. Unconfined ice-shelf flow. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 99–116. Kluwer Academic Publishers, 1987.
[37]D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res., 94(B4):4071–4087, 1989.
[38]C. Schoof. A variational approach to ice stream flow. J. Fluid Mech., 556:227–251, 2006.
[39]W. S. B. Paterson. The Physics of Glaciers. Pergamon, 3rd edition, 1994.
[40]A. J. Payne and D. J. Baldwin. Analysis of ice–flow instabilities identified in the EISMINT intercomparison exercise. Ann. Glaciol., 30:204–210, 2000.
[41]Andrew C. Fowler. Modelling the flow of glaciers and ice sheets. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 201–221. Springer, 2001.
[42]L. W. Morland and R. Zainuddin. Plane and radial ice-shelf flow with prescribed temperature profile. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 117–140. Kluwer Academic Publishers, 1987.
[43]M. Truffer and K. Echelmeyer. Of isbrae and ice streams. Ann. Glaciol., 36(1):66–72, 2003.
[44]I. Joughin, M. Fahnestock, D. MacAyeal, J. L. Bamber, and P. Gogineni. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res., 106(D24):34021–34034, 2001.
[45]J. L. Bamber, D. G. Vaughan, and I. Joughin. Widespread complex flow in the interior of the Antarctic ice sheet. Science, 287:1248–1250, 2000.
[46]N. Golledge, C. Fogwill, A. Mackintosh, and K. Buckley. Dynamics of the Last Glacial Maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Nat. Acad. Sci., 109(40):16052–16056, 2012. doi:10.1073/pnas.1205385109.
[47]D. Pollard and R. M. DeConto. A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: Forced and unforced variations. In M. J. Hambrey and others, editors, Glacial Sedimentary Processes and Products. Blackwell Publishing Ltd., 2007.
[48]C. Schoof and R. Hindmarsh. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart. J. Mech. Appl. Math., 63(1):73–114, 2010. doi:10.1093/qjmam/hbp025.
[49]R. Greve and H. Blatter. Dynamics of Ice Sheets and Glaciers. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, 2009.
[50]Jed Brown, Barry Smith, and Aron Ahmadia. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM J. Sci. Comp., 35(2):B359–B375, 2013.
[51]I. Joughin, W. Abdalati, and M. Fahnestock. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ~glacier. Nature, 432(23):608–610, 2004.
[52]D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth. Acceleration of Jakobshavn Isbræ~triggered by warm subsurface ocean waters. Nature Geoscience, 1:659–664, 2008. doi:10.1038/ngeo316.
[53]M. Lüthi, M. Fahnestock, and M. Truffer. Correspondence: calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbrae, Greenland. J. Glaciol., 55(191):563\,–\,566, 2009.
[54]D. DellaGiustina. Regional modeling of Greenland’s outlet glaciers with the Parallel Ice Sheet Model. Master’s thesis, University of Alaska, Fairbanks, 2011. M.S. Computational Physics.
[55]R. Bindschadler and twenty-seven others. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project). J. Glaciol, 59(214):195–224, 2013.
[56]J. Ettema, M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Let., 2009. doi:10.1029/2009GL038110.
[57]I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197):415–430, 2010.
[58]W. J. J. van Pelt and J. Oerlemans. Numerical simulations of cyclic behaviour in the parallel ice sheet model (pism). Journal of Glaciology, 58(208):347–360, 2012. URL:, doi:10.3189/2012JoG11J217.
[59]A. Aschwanden, G. Adalgeirsdóttir, and C. Khroulev. Hindcasting to measure ice sheet model sensitivity to initial states. The Cryosphere, 7:1083–1093, 2013. doi:10.5194/tc-7-1083-2013.
[60]M. Habermann, M. Truffer, and D. Maxwell. Changing basal conditions during the speed-up of Jakobshavn Isbrae, Greenland. The Cryosphere, 7(6):1679–1692, 2013. doi:10.5194/tc-7-1679-2013.
[61]D. R. MacAyeal, V. Rommelaere, Ph. Huybrechts, C.L. Hulbe, J. Determann, and C. Ritz. An ice-shelf model test based on the Ross ice shelf. Ann. Glaciol., 23:46–51, 1996.
[62]S. De La Chapelle, O. Castelnau, V. Lipenkov, and P. Duval. Dynamic recrystallization and texture development in ice as revealed by the study of deep cores in Antarctica and Greenland. J. Geophys. Res., 103(B3):5091–5105, 1998.
[63]V. Lipenkov, N. I. Barkov, P. Duval, and P. Pimienta. Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35(1):392–398, 1989.
[64]Ralf Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate, 10(5):901–918, 1997.
[65]A. Aschwanden and H. Blatter. Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res., 2009. F01027. doi:10.1029/2008JF001028.
[66]W. S. B. Paterson and W. F. Budd. Flow parameters for ice sheet modeling. Cold Reg. Sci. Technol., 6(2):175–177, 1982.
[67]D. L. Goldsby and D. L. Kohlstedt. Superplastic deformation of ice: experimental observations. J. Geophys. Res., 106(M6):11017–11030, 2001.
[68]L. A. Lliboutry and P. Duval. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophys., 3:207–224, 1985.
[69]E. Bueler and J. Brown. On exact solutions and numerics for cold, shallow, and thermocoupled ice sheets. preprint \texttt arXiv:physics/0610106, 2006.
[70]R. Hooke. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space. Phys., 19(4):664–672, 1981.
[71]K. M. Cuffey and W. S. B. Paterson. The Physics of Glaciers. Elsevier, 4th edition, 2010.
[72]Jonathan H. Tomkin. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. Journal of Geophysical Research: Earth Surface, 112(F2):, 2007. URL:, doi:10.1029/2005JF000332.
[73]M. W. Mahaffy. A three–dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81(6):1059–1066, 1976.
[74]F. Saito, A. Abe-Ouchi, and H. Blatter. An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. Ann. Glaciol., 46:87–96, 2007.
[75]A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. The Cryosphere, 6:273–286, 2012. URL:
[76]M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S. Rebuffi. Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, pages n/a–n/a, 2016. URL:, doi:10.1002/2016GL067695.
[77]J. M. Amundson, M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J. Geophys. Res., 2010. F01005. doi:10.1029/2009JF001405.
[78]T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann. Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere, 5:35–44, 2011.
[79]N. Golledge and twelve others. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Sci. Rev., 78(0):225–247, 2013. doi:10.1016/j.quascirev.2013.08.011.
[80]R. Winkelmann, A. Levermann, K. Frieler, and M.A. Martin. Increased future ice discharge from antarctica owing to higher snowfall. Nature, 492:239–242, 2012.
[81]J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann. Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol., 60(220):353–360, 2014. doi:10.3189/2014JoG13J093.
[82]R. M. Gladstone, A. J. Payne, and S. L. Cornford. Parameterising the grounding line in flow-line ice sheet models. The Cryosphere, 4:605–619, 2010. doi:10.5194/tc-4-605-2010.
[83]G. K. C. Clarke. Subglacial processes. Annu. Rev. Earth Planet. Sci., 33:247–276, 2005. doi:10.1146/
[84]R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the ice sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J. Glaciol, 56(197):371–383, 2010.
[85]C. Schoof. Variational methods for glacier flow over plastic till. J. Fluid Mech., 555:299–320, 2006.
[86]S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 1.~Till mechanics. J. Geophys. Res., 105(B1):463–481, 2000.
[87]E. Bueler and W. van Pelt. Mass-conserving subglacial hydrology in the parallel ice sheet model version 0.6. Geoscientific Model Development, 8(6):1613–1635, 2015. doi: 10.5194/gmd-8-1613-2015.
[88]C. S. Lingle and J. A. Clark. A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. J. Geophys. Res., 90(C1):1100–1114, 1985.
[89]E. Bueler, C. S. Lingle, and J. A. Kallen-Brown. Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Ann. Glaciol., 46:97–105, 2007.
[90]Ralf Greve. Glacial isostasy: Models for the response of the Earth to varying ice loads. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 307–325. Springer, 2001.
[91]C. Schoof. The effect of basal topography on ice sheet dynamics. Continuum Mech. Thermodyn., 15:295–307, 2003. doi:10.1007/s00161-003-0119-3.
[92]S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 2.~Undrained plastic bed model. J. Geophys. Res., 105(B1):483–494, 2000.
[93]M. Siegert, A. Le Brocq, and A. Payne. Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications for sedimentary processes, pages 3–10. Wiley-Blackwell, Malden, MA, USA, 2007.
[94]C. Schoof, I. J. Hewitt, and M. A. Werder. Flotation and free surface flow in a model for subglacial drainage. Part I: Distributed drainage. J. Fluid Mech., 702:126–156, 2012.
[95]Christina L. Hulbe and Douglas R. MacAyeal. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. J. Geophys. Res., 104(B11):25349–25366, 1999.
[96]M. Lüthi, M. Funk, A. Iken, S. Gogineni, and M. Truffer. Mechanisms of fast flow in Jakobshavns Isbræ, Greenland; Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162):369\,–\,385, 2002.
[97]JG Cogley, R Hock, LA Rasmussen, AA Arendt, A Bauder, RJ Braithwaite, P Jansson, G Kaser, M Möller, L Nicholson, and others. Glossary of glacier mass balance and related terms. IHP-VII technical documents in hydrology, 86:965, 2011.
[98]Catherine Ritz, Vincent Rommelaere, and Christophe Dumas. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. J. Geophys. Res., 106(D23):31943–31964, 2001.
[99]A. H. Jarosch, C. G. Schoof, and F. S. Anslow. Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere, 7(1):229–240, 2013. doi:10.5194/tc-7-229-2013.
[100]S. Balay and others. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014.
[101]R. C. A. Hindmarsh and A. J. Payne. Time–step limits for stable solutions of the ice–sheet equation. Ann. Glaciol., 23:74–85, 1996.
[102]A. Payne. EISMINT: Ice sheet model intercomparison exercise phase two. Proposed simplified geometry experiments. 1997. URL:
[103]Ed Bueler. Lessons from the short history of ice sheet model intercomparison. The Cryosphere Discussions, 2:399–412, 2008. URL:
[104]P. Halfar. On the dynamics of the ice sheets 2. J. Geophys. Res., 88(C10):6043–6051, 1983.
[105]R. C. A. Hindmarsh. Thermoviscous stability of ice-sheet flows. J. Fluid Mech., 502:17–40, 2004.
[106]R. C. A. Hindmarsh. Stress gradient damping of thermoviscous ice flow instabilities. J. Geophys. Res., 2006. doi:10.1029/2005JB004019.
[107]F. Saito, A. Abe-Ouchi, and H. Blatter. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. J. Geophys. Res., 2006. doi:10.1029/2004JF000273.
[108]A. J. Payne and P. W. Dongelmans. Self–organization in the thermomechanical flow of ice sheets. J. Geophys. Res., 102(B6):12219–12233, 1997.
[109]F. Pattyn and twenty others. Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere, 2:95–108, 2008.
[110]O. Gagliardini and T. Zwinger. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. The Cryosphere, 2(1):67–76, 2008. URL:
[111]Ralf Greve, Ryoji Takahama, and Reinhard Calov. Simulation of large-scale ice-sheet surges: the ISMIP-HEINO experiments. Polar Meteorol. Glaciol., 20:1–15, 2006.
[112]F. Pattyn, C. Schoof, L. Perichon, and 15 others. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere, 6:573–588, 2012. doi:10.5194/tc-6-573-2012.
[113]F. Pattyn, L. Perichon, G. Durand, and 25 others. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59(215):410–422, 2013.
[114]C. Schoof. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573:27–55, 2007.
[115]D. Goldberg, D. M. Holland, and C. Schoof. Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 2009. doi:10.1029/2008JF001227.
[116]Ian Joughin, Sarah B. Das, Matt A. King, Ben E. Smith, Ian M. Howat, and Twila Moon. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science, 320(5877):781–783, 2008. URL:, doi:10.1126/science.1153288.
[117]P. Dickens and T. Morey. Increasing the scalability of PISM for high resolution ice sheet models. In Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, May 2013, Boston. 2013.
[118]N. Golledge, A. Mackintosh, and 8 others. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews, 46:30–45, 2012. doi:10.1016/j.quascirev.2012.05.004.
[119]J.L. Bamber, R.L. Layberry, and S.P. Gogenini. A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. J. Geophys. Res., 106 (D24):33,773–33,780, 2001.
[120]Ed Bueler, Constantine Khroulev, Andy Aschwanden, Ian Joughin, and Ben E. Smith. Modeled and observed fast flow in the Greenland ice sheet. submitted, 2009.
[121]E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 2012. doi:10.1029/2011JF002140.
[122]S. Price, A. Payne, I. Howat, and B. Smith. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Nat. Acad. Sci., 108(22):8978–8983, 2011. doi:10.1073/pnas.1017313108.
[123]I. Joughin. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34:195–201, 2002.
[124]W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine. An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7(3):987–1006, 2013. doi:10.5194/tc-7-987-2013.
[125]W. T. Pfeffer, J. T. Harper, and S. O’Neel. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321:1340–1343, 2008.
[126]R.C. Bales, J.R. McConnell, E. Mosley-Thompson, and G. Lamorey. Accumulation map for the Greenland Ice Sheet: 1971-1990. Geophys. Res. Lett, 28(15):2967–2970, 2001. URL:
[127]P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998.
[128]Pieter Wesseling. Principles of Computational Fluid Dynamics. Springer-Verlag, 2001.
[129]R. Sayag and M. G. Worster. Axisymmetric gravity currents of power-law fluids over a rigid horizontal surface. J. Fluid Mech., 2013. doi:10.1017/jfm.2012.545.
[130]R. Sayag, S. S. Pegler, and M. G. Worster. Floating extensional flows. Physics of Fluids, 2012. doi:10.1063/1.4747184.
[131]C. R. Bentley. Glaciological studies on the Ross Ice Shelf, Antarctica, 1973–1978. Antarctic Research Series, 42(2):21–53, 1984.
[132]V. Rommelaere and D. R. MacAyeal. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. Ann. Glaciol., 24:43–48, 1997.
[133]A. Humbert, R. Greve, and K. Hutter. Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. J. Geophys. Res., 2005. doi:10.1029/2004JF000170.
[134]A. M. Le Brocq, A. J. Payne, and A. Vieli. An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth System Science Data, 2(2):247–260, 2010. URL:, doi:10.5194/essd-2-247-2010.
[135]E. Rignot, J. Mouginot, and B. Scheuchl. Ice flow of the Antarctic Ice Sheet. Science, 333(6048):1427–1430, 2011. doi:10.1126/science.1208336.
[136]T. Albrecht and A. Levermann. Fracture field for large-scale ice dynamics. J. Glaciol., 58(207):165–176, 2012. doi:10.3189/2012JoG11J191.
[137]E. Bueler. An exact solution to the temperature equation in a column of ice and bedrock. preprint \texttt arXiv:0710.1314, 2007.
[138]K. W. Morton and D. F. Mayers. Numerical Solutions of Partial Differential Equations: An Introduction. Cambridge University Press, 2nd edition, 2005.
[139]John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadsworth, Pacific Grove, California, 1989.
[140]D. Jenssen. A three–dimensional polar ice–sheet model. J. Glaciol., 18:373–389, 1977.